Petrogenesis of Heiran area submarine lavas in north east of Ardabil, Iran: A case study of Sevan-Akera-Qaradagh Ocean back arc basin

  • Yousef Vasigh
  • Erkan Aydar
  • Shahriyar Karimdoust
  • Ekrem Kalkan
  • Abdulvahab Mukhtarov
Keywords: pillow lava, back arc basin, Sevan-Akera-Qaradagh Ocean, Heiran, Ardabil

Abstract

Heiran area is located in north-west of Ardabil and south west of Caspian Sea. Field evidences indicate
submarine volcanic activities in this area. The rocks in this area are of basaltic composition. The
outcrops of pillow lavas, prisms, dykes and lava flows in different points are evidences showing the
existence of oceanic crust in this area. Studies on other locations of southern margin of Caspian Sea
as well as structural and petrological similarities between Heiran and these areas may confirm the
fact that Heiran area is part of geo-suture of Caspian Sea southern margin. The submarine lavas in
this area are associated in age with late Cretaceous-Eocene. With regard to petrographical
characteristics, the rocks under study range from andesitic basalt to olivine basalt and belong to
alkaline series. The tectonomagmatic environment of these lavas is related to back arc basin. These
magmas originate from subcontinental lithospheric mantle and have formed in a supra subduction
environment. During upper Cretaceous-middle Paleogene, the closing of Sevan-Akera-Qaradagh
Ocean led to the formation of marginal basin in the form of a back arc basin in the margin of Caspian
Sea. The submarine lavas of Heiran area are likely to have originated from the volcanic activities of
this marginal basin.

References

Abdel-Fattah, M., Abdel-Rahman, A. M., Nassar, P.E., 2004. Cenozoic Volcanism in the Middle East: Petrogenesis of alkali basalts from northern Lebanon. Geol. Mag. 141 (5), 545-563.

Adamia, Sh. A., Lordkipanidze, M.B., Zakariadze, G.S., 1977. Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics, 40 (3/4), 183-199.

Aghanabati, A., 2004. Geology of Iran, Geological Survey of Iran, 586p.

Aldanmaz, E., Yaliniz, M.K., Guctekin, A., Goncuoglu, M.C., 2008. Geochemical characteristics of mafic lavas from the Neotethyanophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geol. Mag. 145 (1), 37-54.

Annels, R.N., Arthurton, R.S., Basley, R.A., Davies, R.G., 1975. Explanatory text of Qazvin-Rasht quadrangles map, 1:250000, Geological Survey of Iran.

Bagci, U., Parlak, O., Hock, V., 2006. Geochemical character and tectonic environment of Ultramafic to mafic cumulate rocks from the Tekirova (Antalya) ophiolites (southern Turkey). Geological Journal 41, 193- 219.

Beccaluva, L., Coltortia, M., Giuntab, G., Siena, F., 2004. Tethyan vs. Cordilleran ophiolites: a reappraisal of distinctive tectono-magmatic features of supra-subduction complexes in relation to the subduction
mode. Tectonophysics 393, 163-174.

Berberian, M., 1983. The southern Caspian: A compression floored by a trapped modified oceanic crust. Canadian Earth Science 20, 163-183.

Berberian, M., Babakhani, A.R., Amidi, M., 1981. Exploration of southern protraction of Sevan-Akera-Qaradagh geo-suture, internal report, Geological Survey of Iran.

Bradshaw, T.K., Smith, E.I., 1994. Polygenetic Quaternary volcanism at Crater Flat, Nevada. Journal of Volcanology and Geothermal Research 63, 165-182.

Burns, L.E., 1985. The Border Ranges ultramafic and mafic complex, southcentral Alaska: Cumulate fractionates of island arc volcanics. Canadian Journal of Earth Sciences 22, 1029-1038.

Cavazza, W., Roure, F.M., Spakman, W., Stampfli, G.M., Ziegler, P.A., 2004. The TRAVSMED atlas, the Mediterranean region from crust to mantle, Verlag Berlin Heidelberg, 141.

Darvishzadeh, A., 1991. Geology of Iran, Amir Kabir publication, 901.

Deer, W.A., Howie, R.A., Zussman, J., 1991. An introduction to the rock forming minerals, Longman Scientific and Technical, 528.

Dehghani, G.A., Makris, J., 1983. The gravity field and structure of Iran, In Geodynamic Project (Geotraverse) in Iran. G. S. Report No. 51, 51-68.

Eftekharnezhad, J., Asadian, A., Mirzaei, A.R., 1992. Age of ShandermanAsalem metamorphic and ophiolitic complex and relationship with Paleotethys and sub oceanic crust of Caspian Sea. Geosciences 3, 4-15.

Ferrari, L., Conticelli, S., Vaggelli, G., Petrone, Ch., Manetti, P., 2000. Late Miocene volcanism and intra-arc tectonics during the early development of Trans-Mexican Volcanic Belt. Tectonophysics 318, 161-185.

Flower, M.F.J., Robinson, P.T., Schmincke, H.U., Ohnmacht, W., 1977. Magma fractionation systems beneath the Mid Atlantic ridge at 36-37jN. Contribution Mineralogy and Petrology 64, 167-195.

Floyd, P.A., Kelling, G., Gokcen, S.L., Gokcen, N., 1991. Geochemistry and tectonic environment of basaltic rocks from the Miss ophiolitic mélange, south Turkey. Chemical Geology 89, 263-280.

Gill, J.B., 1981. Orogenic andesites and plate tectonics. Springer, Berlin, 489.

Grove, T.L., Bryan, W.B., 1983. Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contributions to Mineralogy and Petrology Journal of Geology 84, 293-309.

Hart, W. K., WoldeGabrie, G., Walter, R.C., Mertzman, S.A., 1989. Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of Geophysical Research 94, 7731-7748.

Helz, R.T., Thornber, C.R., 1987. Geothermometery of Kilauea Ikilava lake, Hawaii. Bulletin of Volcanology 49, 651-668.

Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986. Nb and Pb in ocean basalts: new constraints on mantle evolution. Earth and Planetary Science Letters 79, 33-45.

Hooper, P.R., Hawkesworth, C.J., 1993. Isotopic and geochemical constraints on the origin and evolution of the Colombia River Basalts. Journal of Petrology 34, 1203-1264.

Jenner, G.A., Dunning, G.R., Malpas, J., Brown, M., Brace, T., 1991. Bay of Islands and Little Port complexes, revisted age, geochemical and isotopic evidence confirm suprasubduction zone origin. CanadianJournal of Earth Sciences 28, 1635-1652.

Jutean, T., Erssen, J.P., Monin, A.S., Zonenshin, L.P., Sorokhtin, O.G., Matveenkov, V.V., Almukhamedov, A.I., 1983. Structure et petrologie du rift axial de la Mer Rouge vers 18 N, Bull. Cent. Rech. Explor. Prod. Elf Aquitatine 7, 217-231.

Jutean, T., Maury, R., 1997. Geologie de la croute oceanique petrologei et dynamique endogens. Masson, 569.

Khodabandeh, A.A., 2001. Explanatory text of Astara quadrangles map, 1:100000, Geological survey of Iran.

Knipper, A., 1980. The tectonic position of ophiolites of Lesser Caucasus. In Ophiolites.Edited by A. Panayiotou. Proceedings, International ophiolite Symposium. Geology Survey Department, Ministry of Agriculture and National Resources, Cyprus, 372-376.

Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Gottardi, G., 1988. Nomenclature of pyroxenes. Mineralogy and Petrology 39, 55-76.

Nicoholson, K.N., Black, P.M., Picard, C., 2000. Geochemistry and tectonic significance of the Tangihua Ophiolite Complex, New Zealand. Tectonophysics 321, 1-15.

Nimis, P., Ulmer, P., 1998. Clinopyroxene geobarometry of magmatic rocks, Part 1: an expended structural geobarometer for anhydrous and hydrous basic and ultrabasic systems, Contrib. Mineralogy and Petrology 133, 122-135.

Parlak, O., 1996. Geochemistry and geochronology of the Mersin ophiolite within the eastern Mediterranean tectonic frame (Southern Turkey), Theses doctorate. Universite de Genève, Terre and Environment, 242.

Parlak, O., Hock, V., Delaloye, M., 2002. The supra-subduction zone Pozanti-Kars antiophiolite, Southern Turkey: evidence for highpressure crystal fractionation of Ultramafic cumulates. Lithos 65, 205-224.

Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins: Hawkesworth C. J., and Norry, M. J. (eds), Continental basalts and mantel xenoliths, Shiva, Nantwich 230-249.

Pearce, J.A., Gale, G.H., 1977. Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. Geological Society Special Publications 7, 14-24.

Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry 69, 61-120.

Salavati, M., 2008. Petrology and Geochemistry of ophiolitic complex from the East Gilan, PhD Thesis, Sciences Faculty, University of Esfahan, 241.

Smirnov, V.I., Gnizburg, A.I., Grigoriev, Y.M., Yakolove, G.F. 1983. Studies of mineral deposits, Mir Publishers, Moscow, 288.

Smith, E.I., Sanchez, A., Walker, J.D., Wang, K., 1999. Geochemistry of mafic magmas in the hurricane Volcanic Field, Utah: implications for small and large scale chemical variability of the lithospheric mantle. Journal of Geology 107, 433-448.

Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic ocean isochrones. Earth and Planetary Science Letters 196, 17-33.

Sun, S.S., Bailey, D.K., Tarney, J., Dunham, K., 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philos Trans. R. Soc. London, A297, 409-445.

Sun, S.S., McDonogh, W.F., 1989. Chemical and isotopic systematic of ocean basalts: implication for mantle composition and processes. In: Saunders A. D. and Norry M.J.(Eds.) Magmatism in Ocean Basins, Geological Society of London Special Publication, 313-345.

Wilson, M., 1989. Igneous petrogenesis. Unwin Hyman London. 466.

Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50, 11-30.

Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Science 14, 493-571.
Published
2019-12-30
Section
Articles