Integration of ASTER and Airborne Radiometric Data in the Exploration for Hydrothermal Alteration Zones Associated with Mineral Deposits in Igarra Schist Belt, Nigeria

Authors

Keywords:

F-parameter, band rationing, sericite, K-deviation, potassium alteration.

Abstract

Advanced Spaceborne Thermal Emission and Reflection Radiometer imagery and airborne radiometric data were integrated in order to map hydrothermal alteration zones associated Igarra Schist Belt, Nigeria. Band rationing (BR) and False colour composite (FCC) image processing techniques were performed on the ASTER imagery to map alteration minerals while, F-parameter and K-deviation methods were applied on the airborne radiometric data tin mapping diagnostic hydrothermal alteration zones associated with mineralization. The  Advanced Spaceborne Thermal Emission and Reflection Radiometer  imagery data mapped phyllic, argillic, propylitic, ferric oxides, ferrous oxides, and gossans alteration minerals in the VNIR and SWIR bands of the  Advanced Spaceborne Thermal Emission and Reflection Radiometer system. While the F-parameter and K-deviation methods performed on the radiometric data indicated potassium (K) alteration zones varying from 0.0 – 0.4 and -1.0 – 2.3, respectively.

References

Abd El Nabi, S.H., 2013. Role of γ-ray spectrometry in detecting potassic alteration associated with Um Ba’anib granitic gneiss and metasediments, G. Meatiq area, Central Eastern Desert, Egypt. Arabian Journal of Geosciences 6, 1249-1261. https://doi.org/10.1007/s12517-011-0378-4.

Abu El-Magd, I., Mohy, H., Basta, F., 2015. Application of remote sensing for gold exploration in the Fawakheir area, Central Eastern Desert of Egypt. Arabian Journal of Geosciences 8, 3523-3536.

Adekoya, J.A., 1978. Gold Deposits in Nigeria: A Summary of Available Information. Kaduna South: Special Report of Geological Survey of Nigeria.

Akinlalu, A.A., 2023. Radiometric Mapping for The Identification of Hydrothermally Altered Zones Related to Gold Mineralization in Ife–Ilesa Schist Belt, Southwestern Nigeria. Indonesian Journal of Earth Sciences 3 (1), A519. https://doi.org/10.52562/injoes.2023.519.

Ali-Mohammadi, M., Alirezaei, S., Kontak, D.J., 2015. Application of ASTER data for exploration of porphyry copper deposits, a case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews 70, 290-304.

Amer, R., Kusky, T., Ghulam, A., 2010. Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Science 56, 75-82.

Andongma, W.T., Gajere, J.N., Amuda, A.K., Edmond, R.R.D., Faisal, M., Yusuf, Y.D., 2021. Mapping of hydrothermal alterations related to gold mineralization within parts of the Malumfashi Schist Belt, North Western Nigeria. The Egyptian Journal of Remote Sensing and Space Science 24 (3), 401-417. https://doi.org/10.1016/j.ejrs.2020.11.001.

Annor, A.E., 1998. Structural and chronological relationship between the low grade Igarra schist and adjoining Okene Migmatite-Gneiss terrain in the Precambrian exposure of Southwestern Nigeria. Journal. Mining and Geology 34, 197-194.

Boesse, S., Ocan, O., 1992. Geology and evolution of the Ife-Ilesha Schist belt, southwestern Nigeria, In Benin-Nigeria Geotraverse, International Meeting on the Proterozoic Geology and Tectonics of High-Grade Terrain, IGCP 215, 123-129.

Chisambi, J., Haundi, T., and Tsokonombwe, G., 2021. Geologic structures associated with gold mineralization in the Kirk Range area in Southern Malawi. De Gruyter. Open Geosciences 13, 1345-1357. https://doi.org/10.1515/geo-2020-0304.

De Quadros, T.F.M., Koppe, J.C., Strieder, J.C., Costa, J.F.C.L., 2003. Gamma-Ray Data Processing and Integration for Lode-Au Exploration. Natural Resources Research 12, 57-65. http://dx.doi.org/10.1023/A:1022608505873.

Di Tommaso, I., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews 32 (1-2), 275-290. https://doi.org/10.1016/j.oregeorev.2006.05.004.

Di Tommaso, I., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the infernally porphyry deposit, Argentina. Ore Geology Reviews 32, 275-290. https://doi.org/10.1016/j.oregeorev.2006.05.004.

Efimov, A.V., 1978. Multiplikativnyj pokazatel dlja vydelenija endogennych rud poaerogamma-spektrometriceskim dannym. Metody rudnoj geofiziki. Leningrad, Naucno-Proizvodstvennoje Objedinenie Geofizika 163, 59-68.

Eleraki, M., Ghieth, B., Abd-El Rahman, N., Zamzam, S., 2017. Hydrothermal zones detection using airborne magnetic and gamma ray spectrometric data of mafic/ultramafic rocks at Gabal El-Rubshi area, Central Eastern Desert (CED), Egypt. Advances in Natural and Applied Sciences 11 (9), 182-196.

Emam, A., Zoheir, B., Johnson, P., 2016. ASTER-based mapping of ophiolitic rocks: examples from the Allaqi-Heiani suture, SE Egypt. International Geology Review 58, 525-539. https://doi.org/10.1080/00206814.2015.1094382.

Erdi-Krausz, G., Matolin, M., Minty, B., Nicolet, J.P., Reford, W. S., Schetselaar, E.M., 2003. Guidelines for radioelement mapping using gamma ray spectrometry data: also, as open access e-book. International Atomic Energy Agency (IAEA).

Fakhari, S., Jafarirad, A., Afzal, P., Lotfi, M., 2019. Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran. Iranian Journal of Earth Sciences 11, 80-92.

Ford, K.L., Savard, M., Dessau, J.C., Pellerin, E., Charbonneau, B.W., Shives, B.K. 2001. The role of gamma-ray spectrometry in radon risk evaluation: a case history from Oka, Quebec-Geoscience-Canada-Retrieved. journals.lib.unb.ca/index.php/GC/article/view/4074.

Forson, E.D., Wemegah, D.D., Hagan, G.B., Appiah, D., Addo–Wuver, F., Adjovu, I., Otchere, F.O., Mateso, S., Menyeh, A., Amponsah, T., 2022. Data–driven multi–index overlay gold prospectivity mapping using geophysical and remote sensing datasets. Journal of African Earth Sciences 190, 104504. https://doi.org/10.1016/j.jafrearsci.2022.104504.

Frassy, F., Maianti, P., Marchesi, A., Nodari, F,R., Via, G.D., Paulis, R.D., Biffi, P.G., Gianinetto, M., 2015. Satellite remote sensing for hydrocarbon exploration in new venture areas laboratory of remote sensing (L@ RS), Politecnico di Milano - Department of Architecture, Built Environment and Construction Engineering (ABC), Via Ponzio 31, 20133 Milano, pp. 2884-2887.

Gabr, S.S., Hassan, S.M., Sadek, M.F., 2021. Application of remote sensing in detecting mineralized zones in the pan-african belt of Egypt. In: Hamimi Z, Arai S, Fowler AR, El-Bialy MZ (eds) The Geology of the Egyptian Nubian Shield. pp. 645-664. https://doi.org/10.1007/978-3-030-49771-2_23.

Gad, S., Kusky, T.M., 2006. Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using landsat thematic mapper (TM). Journal of African Earth Sciences 44, 196-202.

Garba, I., 2002. Late Pan African Tectonics and Origin of Gold Mineralization and Rare Metal Pegmatites in the Kushaka Schist Belt, Northwestern Nigeria. Journal of Mining and Geology 38, 1-12. https://doi.org/10.4314/jmg.v38i1.18768.

Graham, D.F., Bonham-Carter, G.F., 1993. Airborne radiometric data - A tool for reconnaissance geological mapping using a GIS. Photogrammetric Engineering and Remote Sensing 59 (8), 1243-1249.

Grasty, R.L., Shives, R.B.K., 1997. Applications of gamma ray spectrometry to mineral exploration and geological mapping. In Workshop presented at Exploration (Vol. 97).

Jiang, D., Liu, L., Zhou, J., Zhuang, D., 2014. Lithological discrimination of the mafic-ultramafic complex, Huitongshan, Beishan, China: Using ASTER data. Journal of Earth Science 25 (3), 529-536. https://doi.org/10.1007/s12583-014-0437-3.

Laben, C.A., 2000. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. US Patent 6, 011, 875.

Maden, N., Akaryalı, E., 2015. Gamma ray spectrometry for recognition of hydrothermal alteration zones related to a low sulfidation epithermal gold mineralization (eastern Pontides, NE Türkiye). Journal of Applied Geophysics 122, 74-85. https://doi.org/10.1016/j.jappgeo.2015.09.003.

McCuaig, T.C., Hronsky, J.M.A., 2014. The Mineral System Concept the Key to Exploration Targeting. In K.D. Kelley & H.C. Golden, Building Exploration Capability for the 21st Century. Society of Economic Geologists. https://doi.org/10.5382/SP.18.08.

McCurry, P., 1989. A general review of the geology of the Precambrian to Lower Paleozoic rocks of Northern Nigeria. In: Kogbe, C.A. (Ed.), Geology of Nigeria, Rock View, Jos, 13-37.

Nair, A.S., Mathew, J., 2012. Application of ASTER data in geological mapping and mineral exploration. International Journal of Remote Sensing 33 (12), 3763-3780. https://doi.org/10.1080/01431161.2011.636081.

Obaje, N.G., 2009. Geology and mineral resources of Nigeria. Springer, London, Dordrecht.

Odeyemi, I.B., 1976. Preliminary Report on the Field Relationships between the Basement Complex Rocks in Igarra, Midwestern Nigeria. In: Kogbe CA, editor. Geology of Nigeria. Lagos, Nigeria: Elizabethan Publication and Co.; 1976. p. 59-63.

Odeyemi, I.B., 1988. Lithostratigraphy and structural relationships of the upper Precambrian metasediments Igarra area, Southwestern Nigeria. In: Oluyide P.O., Mbonu W.C., Ogezi A.E., Egbiniwe I.G., Ajibade A.C., Umeji A.C. (Eds.), Precambrian Geology of Nigeria. Geol Surv Nigeria: 111-125.

Olomo, K.O., Bayode, S., Alagbe, O.A., Olayanju, G.M., Olaleye, O.K., 2022. Aeromagnetic Mapping and Radioelement Influence on Mineralogical Composition of Mesothermal Gold Deposit in Part of Ilesha Schist Belt, Southwestern Nigeria. NRIAG Journal of Astronomy and Geophysics 11 (1), 177-192. https://doi.org/10.1080/20909977.2022.2057147.

Phillips, G.N., Powell, R., 2010. Formation of gold deposits: a metamorphic devolatilization model. Journal of Metamorphic Geology 28 (6), 689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x.

Pour, A.B., Hashim, M., 2015. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews 44, 1-9.

Qiu, F., Abdelsalam, M., Thakkar, P., 2006. Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, southern Egypt. Journal of African Earth Sciences 44, 169-180.

Rahaman, M.A., 1988. Recent advances in the study of the basement complex of Nigeria. In: Geological Survey of Nigeria (Ed.) Precambrian Geol Nigeria, pp 11-43.

Rajendran, S., Nasir, S., Kusky, T.M., Ghulam, A., Gabr, S., El Ghali, M., 2013. Detection of hydrothermal mineralized zones associated with Listwaenites rocks in the Central Oman using ASTER data. Ore Geology Reviews 53, 470-488.

Robb, L., 2005. Introduction to ore-forming processes. Blackwell Science Ltd, London, pp 166-173.

Rowan, L.C., Hook, S.J., Abrams, M.J., Mars, J.C., 2013. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Economic Geology, 98 (5), 1019-1027. https://doi.org/10.2113/gsecongeo.98.5.1019.

Rowan, L.C., Schmidt, R.G., Mars, J.C., 2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralizedarea based on spectral analysis of ASTER data. Remote Sensing of Environment 104, 74-87.

Rushmer, T., 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology 107 (1), 41-59. https://doi.org/10.1007/BF00311184.

Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews 14, 157-183.

Salem, S.M., Soliman, N.M., Ramadan, T.M., Greiling, R.O., 2013. Exploration of new gold occurrences in the alteration zones at the Barramiya District, Central Eastern desert of Egypt using ASTER data and geological studies. Arabian Journal of Geosciences 7, 1717-1731.

Sanusi, S.O., Amigun, J.O., 2020. Structural and hydrothermal alteration mapping related to orogenic gold mineralization in part of Kushaka schist belt, North-central Nigeria, using airborne magnetic and gamma-ray spectrometry data. SN Applied Sciences 2, 1-26. https://doi.org/10.1007/s42452-020-03435-1.

Saunders, D.F., Terry, S.A., Thompson, C.K., 1987. Test of national uranium resource evaluation gamma-ray spectral data in petroleum reconnaissance. Geophysics 52 (11), 1547-1556. https://doi.org/10.1190/1.1442271.

Volesky, J.C., Stern, R.J., Johnson, P.R., 2003. Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Research 123 (2-4), 235-247. https://doi.org/10.1016/S0301-9268(03)00070-6.

Wilford, J.R., Bierwirth, P.E., Craig, M.A., 1997. Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology. AGSO Journal of Australian Geology and Geophysics 17 (2), 201-216.

Wilford, J., 1997. Airborne gamma ray spectrometry: Cooperative research centre for landscape environments and mineral exploration. Geosci Aust., 46-52.

Woakes, M., Rahaman, M.A., Ajibade, A.C., 1987. Some Metallogenetic Features of the Nigerian Basement. Journal of African Earth Sciences 6, 54-64.

Zoheir, B., Emam, A., Harraz, H.Z., 2019. Hydrothermal alteration and gold mineralization in the Um Rus area, Central Eastern Desert, Egypt: Implications for exploration. Ore Geology Reviews 107, 1-19. https://doi.org/10.1016/j.oregeorev.2019.02.001.

Downloads

Published

2024-09-01