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1. Introduction 
LWL predictions using time series analysis has become one 
of the major researches focuses among geophysicists, 
geodesists and oceanographers. As a significant characteristic 

of the Lake ecosystem, precise LWL forecasting is important 
for lake water resources management and proper planning 
purposes (Barzeger et al., 2020; Aytek et al., 2014). 
Additionally, LWL studies help geospatial professionals and 
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Several studies in the past and recent years have suggested numerous mathematical models 
for Lake Water Level (LWL) modelling to a good precision. This study considered an 
empirical evaluation of Artificial Intelligence and Classical Techniques such as Wavelet 
Transform (WT), Bayesian Regularization Backpropagation Artificial Neural Network 
(BRBPANN), Levenberg-Marquardt Backpropagation Artificial Neural Network 
(LMBPANN), Scaled Conjugate-Gradient Backpropagation Artificial Neural Network 
(SCGBPANN), Radial Basis Functions Artificial Neural Network (RBFANN), Generalized 
Regression Artificial Neural Network (GRANN), Multiple Linear Regression (MLR), and 
Autoregressive Integrated Moving Average (ARIMA) for   LWL modelling. The motive is to 
apply and assess for the first time in our study area, the working efficiency of the 
aforementioned techniques. Satellite altimetry data provided by the United States 
Department of Agriculture was used in this study. The input and output variables used in this 
study were the decomposed LWL by the WT. Each model technique was assessed based on 
statistical measures such as Arithmetic Mean Error (AME), Arithmetic Mean Square Error 
(AMSE), arithmetic mean absolute percentage deviation (AMAPD), minimum error value
(rmin), maximum error value (rmax), and arithmetic standard deviation (ASD). The statistical 
analysis of the results revealed that, all the hybridized models successfully estimate the LWL 
heights at a good precision for the study area. However, Discrete Wavelet Transform (DWT)-
MLR model outperforms DWT-BRBPANN, DWT-LMBPANN, DWT-SCGBPANN, 
DWT-RBFANN, DWT-GRANN, and DWT-ARIMA techniques in estimating the LWL 
heights for the study area. In terms of AME, AMSE and ASD, DWT-MLR achieved 0.1988 
m, 0.0024 m, and 0.0017 m respectively. The main conclusion drawn from this study is that, 
the method of using novel ensemble models is promising and can be adopted for LWL
modelling in the study area. This study seeks to contribute to the existing knowledge on 
understanding the hydrodynamic processes in Lake Volta Basin and support water resource 
management.  
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governmental authorities in decision making on climate 
adaptation and mitigating strategies to reduce risk in spatial 
contest (Grgic et al., 2017). Moreover, water level (WL) 
studies contribute massively to the understanding nature of 
processes, patterns and interactions of the changing earth 
(Pashova and Popova, 2011). Precise determination of the 
WL can be done using available monthly and the associated 
meteorological data (El-Shazly, 2005). However, this is a 
difficult task in many scientific and practical fields of 
applications (Sithara et al., 2020; Ebtehaj et al., 2019; Al-
Krargy et al., 2017). This is due to the variation of the WL 
known as sea surface topography (SST) and meteorological 
conditions (El-Shazly, 2005). Conversely, this can be as a 
result of non-climatic factors such as tectonic activity, 
changes in local catchment morphology and anthropogenic 
activities (Srivasta et al., 2020). These factors by climate and 
human activities have affected the accessibility of ecological 
LW and has decreased tremendously especially in arid and 
semi-arid areas (Liu et al., 2019). LWL fluctuation is a 
complex and dynamic process, characterized by highly 
stochasticity, non-linearity problems, and difficult to model 
and forecast (Zhu et al., 2020a). However, this has drawn the 
attention of many researchers to develop models for 
simulating of the extreme or abnormal LWL variations in 
order to control future LWL changes (Aytek et al., 2014), In 
view of that, several scholars have proposed different 
methodologies to aid in estimating the LWL to a good 
precision.  
 
The WL could be determined either by a relative technique 
(tide gauges) (Tolkatchev, 1996) with reference to a local 
geodetic datum (geoid) on land or an absolute technique 
(satellite altimetry) (Mitchum, 2000) with reference to a 
global reference datum (ellipsoid). Additionally, the classical 
levelling techniques can be used to determine the WL (El-
Shazly, 2005). The presented study considered the latter 
approach (absolute technique) in determining the LWL due 
to the availability of satellite altimeter data for the study area. 
Notably among some of the applications of absolute 
techniques that have been applied in the past and recent years 
include tides measurement (Tziavos et al., 2005), precise 
geoid determination (Andersen and Knudsen, 1998; 
Cazenave et al., 1996), global mean sea surface models 
(Lemoine et al., 1998; Wenzel, 1998) and regional mean sea 
surface models (Arabelos and Tziavos, 1996; Vergos et al., 
2003) as well as the recovery of gravity anomalies from the 
altimetry measurements. 
 
Recent studies reveal that, there are limitations in the relative 
techniques for WL determination such as inadequate and 
inhomogeneous distribution of the used geodetic data (Amin, 
2003) and geophysical process within the earth’s system that 
cause changes in global WL (Srivasta et al., 2020; 
Makarynskyy et al., 2004; Tziavos et al., 2005). In addition, 
the classical levelling techniques does not truly represent WL 
and it varies from place to place (El-Shazly, 2005). The 
inconsistency of the relative techniques led to the 
investigation of how modern techniques and abundant data 
source may be utilized for geodetic purpose (Turner et al., 
2013). Precise prediction of WL can be done using 
sophisticated mathematical models which include time series 
and climate data (Pashova and Popova, 2011; Ledolter, 

2008). The traditional method for WL prediction includes the 
classical least square (El-Shazly, 2005; Jian-Jun, 2003), 
Kalman Filter (Okwuashi and Olayinka, 2017; Adnan et al., 
2012; Peprah and Larbi, 2021), Hydro-Balance models 
(Fischer et al., 2020; Lin et al., 2015), Soil and Water 
Assessment Technique (SWAT) model (Muthuwatta, 2004), 
and ARIMA (Ebtehaj et al., 2019; Farajzadeh et al., 2014; 
Fernandez et al., 2018; Srivastava et al., 2016; Fernandez et 
al., 2017; Makwinga et al., 2017; Ledolter, 2008). However, 
in recent times, the level of uncertainty in the existing 
approaches for LWL forecast methods have increased 
significantly due to climate change (Ebtehaj et al., 2019). 
Hence, there is the need to develop more sophisticated 
accurate models for precise estimation of LWL. These 
aforementioned techniques are very viable but have 
limitations due to their inabilities to model noisy data, 
nonlinearity between the dataset and data availability 
(Yakubu et al., 2018) (such as lake discharge and 
meteorological data which were not available) and for that 
matter not considered in this study. For that reason, soft 
computing methods which have the advantage of using 
available data directly for forecasting without any 
simplification and requirements was adopted (Adnan et al., 
2012). Notably, the Artificial Neural Network (ANN) is one 
of the commonly used soft computing methods (Yaseen et 
al., 2020; Zhu et al., 2020a; Zhu et al., 2020b; Demir and 
Ulke Keskin, 2020; Deo and Chaudhari, 1998). 
 
Soft computing is a machining learning technique which is 
built on how the neurons in the human brain operates 
(Piasecki et al., 2015). ANN is one of the most widely used 
soft computing method which is capable of directly 
correlating the multiple input variables with output variables 
through iteratively learning (Piri and Kahkha, 2016; Pashova 
and Popova, 2011). Some examples of ANN techniques that 
have been applied in the recent decades in WL studies 
include Least Squares Support Vector Machine (LSSVM) 
(Kaloop et al., 2020; Sithara et al., 2020; Kaloop et al., 2017; 
Okwuashi and Ndehedehe, 2017; Shafaei and Kisi, 2015), 
Backpropagation Artificial Neural Networks (Ebtehaj et al., 
2019; Yaseen et al., 2020; Piasecki et al., 2015; Adnan et al., 
2012; Pashova and Popova, 2011; Ghorbani et al., 2010; 
Pozzi et al., 2000), Genetic Programming (Aytek et al., 
2014), Radial Basis Function Neural Network (Nikentari, 
2017), Generalized Regression Neural Network (GRNN) 
(Pashova and Popova, 2011), Wavelet Transform analysis 
(Wang et al., 2020; Sithara et al., 2020; Zhu et al., 2020c; Zhu 
et al., 2019; Jie-Xing, 2012; Sehgal et al., 2014; Sahay and 
Sehgal, 2014), Convolutional Neural Networks (CNN) 
(Barzegar et al., 2020) and Multivariate Adaptive Regression 
Splines (MARS) (Zahra and Xiaoli, 2015) are some of the 
methods been applied. The researchers concluded from their 
research findings that, the ANN techniques are promising 
and can be adopted to model and predict the WL to a good 
precision. The authors were motivated to embark on this 
study due to the results found in the works of (Zhu et al., 
2020a; Piasecki et al., 2018; Young et al., 2015; Kisi et al., 
2012). 
 
In Africa, of which the Republic of Ghana is an example, the 
WL and WL variations have affected related applications in 
coastal engineering, geophysics studies and space research 
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(El-Shazly, 2005). The LWL was established at Lake Volta, 
Ghana by using the available altimetry data between the 
years (October 1992 to September 2020). The study for the 
first time in Ghana, applied and assessed the performance of 
DWT, soft computing and classical techniques such as 
BRBPANN, LMBPANN, SCGBPANN, RBFANN, 
GRANN, MLR and ARIMA as an effective tool for 
modelling and predicting LWL in the study area. In order to 
resolve the problems associated with nonlinearity problems 
with the ANN techniques and limitations of the classical 
techniques, wavelet transform (WT) based on time series for 
LWL forecasting was applied. WT is nonlinear function that 
is defined for a range of finite and infinite integrals (Veitch, 
2005; Kumi-Boateng and Peprah, 2020).  
 
In this study, DWT which is an example of finite integral was 
applied. Predicting LWL with noise in a high precision is 
difficult, hence there is the need to remove noise from the 
original data before prediction (Chao-Long et al., 2011). WT 
has the capabilities to denoise noisy dataset. In this present 
study, WT was applied to remove noise from LWL original 
data at first, then predict it at high precision using soft 
computing and classical techniques. This was done because 
ANN techniques have problem with nonlinearity between 
the input and output variables (Adnan et al., 2012) and in 
order to improve its performance, there was the need to 
applied WT. Upon carefully reviewing of existing literature, 
these aforementioned techniques have not been applied 
within Ghana. Therefore, this study will help scientist in 
Ghana to know the efficacy of using soft computing and 
classical techniques for future forecasting of the LWL. This 
is because, the knowledge of LWL is very vital for protection 
of catchment areas and monitoring changes in lake 
ecosystem. 
 
2 Study Area 
The study area (Fig. 1a to 1d) is one of the highly esteemed 
projects from the period of Africa’s decolonization (Lawson, 
1970). Lake Volta is the largest artificial reservoir by surface 
area in the world, covering an approximated total area of 
8500 km2 which represent 3.2 % of Ghana’s total land surface 
(Ndehedehe et al., 2017; Ni et al., 2017). The lake which lies 
entirely in Ghana is shared by six West African countries 
namely, Benin, Burkina Faso, Ivory Coast, Ghana, Mali and 
Togo. The aim of its construction was to produce 
hydroelectric power (Owusu et al., 2008; Béné, 2007; Gyau-
Boakye, 2001), but the reservoirs fisheries have been a 
significant socio-economic importance to Ghana (Béné and 
Obirih-Opareh, 2009; Béné and Russell, 2007; Braimah, 
2003; Abban, 1999).  
 
The Volta basin is primarily underlain by a Voltarian 
formation consisting of Sandstones, Shales and Mudstones. 
Another formation is Precambrian, classified into Birimian, 
Buem and Tarkwaian rocks (Dickson and Benneh, 1977). 
The basin stretches over four climate regions. From lowland 
rainforest in the South with approximated geographical 
location of 006º 17´ 20.96ʺ North (N) and 000º 0´ 50.92ʺ West 
(W) to the Sahel-Sudan desert in the North with geographical 
location 009º 3´ 8.26ʺ N and 001º 7´ 33.26ʺ W (Rodger et al., 
2007). 

The average topographic elevation of the study is 400 m and 
the average water level is 4 m. Much of the Volta basin lies 
in a rainfall region which starts from July to September. The 
North has only one wet season in September. In the South, 
there are two rainy seasons which starts from June to July 
and September to October (Ni et al., 2017).   
 
 
 

 
 

Fig. 1a. Regional map of Ghana showing the study area 
 
 
 

 
 

Fig. 1b. Digital Elevation Model of the Study area 
 
 
 

 
 

Fig. 1c Satellite Image showing the study area 
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3. Material and Methods Used 
3.1. Data used   
The LWL heights for Lake Volta Basin were obtained from 
Satellite altimetry data of observed lake height variations 
computed from (Topex/Poseidon, Jason-1, Jason-2. Jason-3, 
TP/J1, TPJOS and Jason-2/OSTM) provided by the United 
States Department of Agriculture (USDA). The geodetic 
datum for these heights was the world ellipsoid. The use of 
altimetry-based measurements for a data deficient region is 
beneficial since they are continuous and potentially available 
few days after measurement (Ndehedehe et al., 2017; Coe 
and Birkitt, 2004). Thus, time series data of Lake Volta level 
heights covering the period of 28 years from (October 1992 
to September 2020) were downloaded from 
(https://www.pecad.fas.usda.gov/cropexplorer/global_rese
rvoir/gr_regional_chart_jason1.aspx?regionid=wafrica&res
ervoir_name=Volta) database and used in this study to model 
and predict Lake Volta WL. As presented in the works of 
(Ndehedehe et al., 2017; Ni et al., 2017), satellite altimetry 
data has been successfully validated by comparing altimetric 
time series and in situ observations. Additionally, all classical 
corrections (polar and solid earth tides, ionospheric and 
tropospheric delay, and altimeter biases) have been applied 
to the altimetry data. This was done by using a median type 
filter to eliminate outliers and reduce high frequency noise. 
 
3.2. Computations of monthly MLWL 
The available time series of Lake Volta WL data for a period 
of 336 months were used. This period started from October 
1992 to September 2020. The monthly MLWL from the 
given altimetry data were computed according to Eq. 1. 
However, the monthly meteorological and lake discharge 
data were not available, hence not included. 
 

 
i
j

i
ji

n
x

MLWL 1,
 (1) 

 
where xi is the time series data, i is an integer ranging from 1 
to n, and n is the number of observations. Table 1 is the 
statistical analysis of the satellite altimeter data, thus, 
maximum (max), minimum (min), mean value and standard 
deviation (SD) of the computed monthly MLWL. Figs. 2a 
and 2b are the monthly distribution and histogram graph 
analysis of the computed monthly MLWL. Fig. 3 is the 
flowchart for the present study methodology. 
 
 
 
Table 1. Statistical analysis of computed monthly MLWL (units in meter) 

 

PCI min max mean SD 

MLWL -0.0400 7.9967 0.2272 0.0114 
 
 
 

3.3. DWT 
WT analysis was applied since noise is an important factor 
that influences the precision and accuracy of predictions 
(Chao-Long et al., 2011). WT is one of the time frequency 
analysis. The classical signal analysis is built on the basis of 
Fourier transform (Jie-Xing et al., 2012). WT has been 
widely used to analyze and denoise signals, images and its 
applications in hydrological studies and earth sciences is well 
acknowledged (Sithara et al., 2020; Zhu et al., 2020c). A 

detailed theoretical literature of WT can be found in the 
works of (Xue et al., 2017; Shafaei and Kisi, 2015; Jie-Xing 
et al., 2012; Veitch 2005; De-Bao et al., 2012). WT 
decompose a given data into different resolution levels and 
analyses each level with a resolution mapped to its scale 
(Huang et al., 2016; Zhou and Yin, 2014).  
 
 
 

 
 

Fig. 2a. Monthly mean distributions of Lake Volta WL 
 
 
 

 
 

Fig. 2b. Histogram graph analysis of the computed data MLWL 
 
 
 

For LWL modelling, the discrete DWT was applied to 
decompose the computed MLWL heights X(t) 
decomposition into low frequency component and high 
frequency component. DWT helps the user to achieved one 
or more detail series and approximation at different scales 
(Zhu et al., 2019; Ismail et al., 2018; Shafaei and Kisi, 2015). 
DWT was adopted in this study to decompose the raw time 
series data of Lake Volta Basin since existing studies have 
shown that, DWT has a higher efficiency and is simpler to 
use which requires less computation time (Zhu et al., 2019; 
De-Bao et al., 2012). DWT is calculated by successive low 
pass and high pass filtering of the discrete time domain signal 
(Ismail et al., 2018). This is known as the Mallat algorithm 
or Mallat-tree decomposition. The Mallat algorithm was 
implemented because is a fast wavelet algorithm based on 
multi-resolution analysis including two parts of 
decomposition and reconstruction (Shafaei and Kisi, 2015; 
Zhou and Yin, 2014).  
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Fig. 3. Flowchart of the project methodology 
 
 
 

However, its significance is in the manner it connects the 
continuous time multiresolution to discrete time filters (Zhu 
et al., 2019; Ismail et al., 2018). One of the most important 
factors when implementing the DWT algorithm is the 
selection of an appropriate wavelet function (Zhu et al., 
2019). The dbN wavelet function is effective for geodetic 
purpose because of its localization capability in both time and 
frequency domains (Huang et al., 2016). Previous studies 
suggest that, the best results can be achieved from a 
decomposition of level three, four or five (Zhu et al., 2019; 
Huang et al., 2016; Zhou and Yin, 2014). In this study, the 
best decomposition level for MLWL modelling is four. 
Wavelet function )(t which is called the mother wavelet 

define as 




 0)( dtx  can be achieved through compressing 

and expanding )(t  given by Eq. 2: 







 


a

bt

a
tba  1
)(,
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where a is positive which define the scale, b is any real 
number which define the shift or time factor, )(, tba  is the 

successive wavelet.  
 
The pair (a, b) defines in the right half plane RR . If 

)(, tba  satisfy Eq. 2 for the time series )()( 2 RLtf  , 

successive wavelet transforms of )(tf  is defined by Eq. 3 as: 
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
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
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dt
a
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where; ),( baf  is complex conjugate functions of ).(t  
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For a discrete time, series )(tf  which occurs at a different 
time t can be defined as Eq. 4 given as: 
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where ),( kjf  is the wavelet coefficient for discrete 

wavelet of scale .2,2 jkbja   

 
3.4. RBFANN 
RBFANN model is an unsupervised learning algorithm 
which is constructed based on functional approximation. It 
consists of three functionally distinct layers namely; an input 
layer, a hidden layer and an output layer. The input layer is 
made up of sensory units that connect the network to its 
environment. In the second layer, the only hidden layer in 
the network applied a nonlinear transformation from the 
input space to the hidden space. The output layer is linear, 
supplying the response of the network to the activation 
pattern applied to the output layer. In this study, the input 
and output variables were frequency component values 
denoted as  123 4,4,4  iii aaa , ]1,1[ 12  ii dd ,  12 2,2  ii dd ,  12 3,3  ii dd , 

 123 4,4,4  iii ddd  and  ia4 , ]1[ id ,  id2 , ]3[ id ,  id4 , respectively. The 

dataset used for the formulation of the model were divided as 
training data which consist of 70 % of the total LWL dataset 
and testing data which consists of 30 %. RBFNN is an exact 
interpolator (Erdogan, 2009), hence a linear function is used 
in the input neurons and the connection between the input 
and hidden layers are not weighted (Yakubu and Dadzie, 
2019; Kaloop et al., 2017). In this presented study, the 
Gaussian function is applied, and the output neuron is a 
summation of the weighted hidden output layer given by Eq. 
5 (Erdogan, 2009): 
 





n

j
jj xxy

1

)()( 
 

(5) 

where n is the number of hidden neurons Rx M  is the 
input, K j are the output layer weights of the radial basis 

function network, 𝜒௝(𝑥) is Gaussian radial basis function 
given by Eq. 6 (Srichandan, 2012; Idri et al., 2010): 
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(6) 

 
where Rc M

j   and   are the centre and width of j th  hidden 

neurons respectively,  denotes the Euclidean distance. 
 
3.5. BPANN 
BPANN is a supervised kind of multilayer feedforward 
neural network which consist of three layers namely, the 
input layer, hidden layer and output layer. In this study, the 
input and output variables were the frequency component 
values defined in section 3.4. In BPANN, the dataset has to 
be normalized to eliminate the impact on the model due to 
different dimensions and units of variables (Yakubu et al., 
2018a; Huang et al., 2016). The original data to be used for 
the BPANN iterating and its model formulation are 

expressed in different units with different physical meanings. 
Hence, for constant variation in the BPANN model, datasets 
are frequently normalized to a certain interval such as [-1, 1], 
[0, 1] or other scaled criteria (Ziggah et al., 2016). The 
selected input and output variables were normalized between 
the intervals [−1, 1] according to Eq. 7 (Mueller and 
Hemond, 2013): 
 

   
 minmax

minminmax
min xx

xxyy
yy i

i 



 

(7) 

 
where y i

 represents the normalized frequency component 

values, xi is the frequency component values while xmin  and 

xmax  represent the minimum and maximum values of the 
frequency component values with ymax

and ymin
values set at 

1 and -1, respectively. To find the optimum weight 
combination and best learning training algorithm for the 
study area, the network was trained by using Bayesian 
Regularization, Levenberg-Marquardt, and Scaled 
Conjugate Gradient learning algorithms. The datasets were 
divided into training (70 %) and testing (30 %). The objective 
of training is to find the set of weights between the neurons 
that determine the global minimum of error function. The 
main function of the testing set is to evaluate the 
generalization ability of a trained network. Training is 
stopped when the error of the testing dataset starts to increase 
(Chakraborty and Goswani, 2017). The tansig and purelin 
activation functions were used for the hidden and output 
layer respectively in the network training. BPANN is an 
iterative training procedure, therefore the network was 
trained varying the number of hidden neurons ranging from 
1 to 50 until the optimal model was achieved. 
 
3.5.1. SCGBPANN 
SCGBPANN training algorithm denoted as (trainscg) 
belongs to a class of conjugate gradient methods (Arthur et 
al., 2020) developed by Moller (1993). It is a basic BPANN 
algorithm which adjusts the weights in the steepest descent 
direction, thus, the most negative of the gradient (Baghirli, 
2015). This happens to be the direction in which the 
performance function is decreasing rapidly. It was revealed 
in the work of Hagan et al. (1996) that, the function decreases 
most rapidly along the negative of the gradient which does 
not necessarily produce the fastest convergence. In 
SCGBPANN model building, a search is performed along 
such a direction, which yields generally faster convergence 
than the steepest descent direction while preserving the error 
minimization obtained in all previous steps (Baghirli, 2015; 
Kisi and Uncuoglu, 2005). This kind of direction is called the 
conjugate direction (Baghirli, 2015). Additionally, the step-
size is adjusted at each iteration and a search is made along 
the conjugate gradient direction to determine the step size 
(Arthur et al., 2020; Baghirli, 2015). This helps minimizing 
the performance function along that line. SCGBPANN 
commence by searching in the steepest descent direction at 
first iteration given by Eq. 8 (Baghirli, 2015). Moreover, 
SCGBPANN models are used with line search. This implies 
that, the step size is approximated with a line search 
technique which ignore the computation of the Hessian 
matrix to determine the optimal distance to move along the 
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current search direction given by Eq. 9. The next search 
direction is obtained to conjugate to previous search direction 
as according to Eq. 10. Hence, the general procedure for 
obtaining the new search direction is achieved by combining 
the new steepest descent direction with the previous direction 
(Arthur et al., 2020; Baghirli, 2015; Sandhu and Chhabra, 
2011; Hagan et al., 1996). 
 

gp    (8) 
 

gaxx kkkk 1  (9) 

 
 1 kkkk g  (10) 

 
The various types of conjugate algorithms are distinguished 
by the manner in which the factor  k

 is calculated (Baghirli, 

2015; Kisi and Uncuoglu, 2005). Conversely, there is a 
possibility to use another approach in estimating the step size 
than the line search technique. The notion behind is to 
combine the model trust region approach (Bahirli, 2015), 
known from the LMBPANN algorithm with the 
SCGBPANN approach. This approach is known as SCG and 
detailed in the work of Moller (1993). In this model technique 
as represented by Eq. (11), is the Hessian matrix 
approximation, E is the total error function and E '  is the 
gradient of E , scaling factors  k  and  k  are introduced to 
approximate the Hessian matrix and initialized by the user at 
the beginning of the algorithm iterating such that

100 b
k

  and 100 4  k (Baghirli, 2015). In 
SCGBPANN model building,  k

factor calculation and 

direction are done according to Eqs. 12 and 13 (Moller 1993) 
given as: 
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 kkkk g   11  (13) 

 
In addition, design parameters are updated at each iteration 
stage independently, which is an important for the success of 
the algorithm. This is a major advantage compared to the line 
search-based algorithms (Baghiri, 2015). Moreover, the 
trainscg algorithm denotes a quadratic approximation to the 
E in a neighborhood of a point w by  yEqw

 given by Eq. 14 

(Arthur et al., 2020): 
 

       wEywEwEyE y
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'''

2

1
  (14) 

 
Hence, to determine the minimum of  yEqw

, the critical 

points for  yEqw
must be found (Arthur et al., 2020). The 

critical points are the solution to the linear system defined by 
Moller (1993). The SCG algorithm can train any networks as 
long as its weight, net input, and transfer functions having 
derivatives functions (Arthuer et al., 2020; Sanhu and 

Chhabra, 2011). 
3.5.2. LMBPANN 
LMBPANN training algorithm denoted as (trainlm) is an 
iterative model for finding the minimum of a multivariate 
error function  Z  according to Eq. 15 and is expressed as the 
sum of squares of the difference between the actual output 
 yi  and target output  t i  (Arthur et al., 2020; Adeoti and 

Osanaiye, 2013). 
 

   tyZ iiji
2

1
,
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The trainlm algorithm was designed to approach second-
order training speed without having to compute the Hessian 
Matrix (Baghirli, 2015). The Hessian matrix  H  and the 
gradient  g  can be computed using Eqs. 16 and 17 
respectively, when the performance function has a form of 
sum of squares (Kisi and Uncuoglu, 2005; Baghirli, 2015; 
Arthur et al., 2020). 
 

JJH T  (16) 
 

eJg T  (17) 
 

where; J is the Jacobian matrix containing the first 
derivatives of the network errors with respect to the biases 
and weights, and e  is the network error vector. The Jacobian 
matrix can be computed through a standard backpropagation 
technique that is much less complex than computing the 
Hessian matrix (Arthur et al., 2020; Baghirli, 2015). The 
trainlm algorithm uses this approximation to the Hessian 
matrix in following Newton-like update according to Eq. 18: 
 

eJIJJww TT
ii

1
1


    (18) 

 

where; w  is the connection weights,   is the damping term 
and I  is the identity matrix. The trainlm uses the 
combination of Gauss-Newton method and gradient descent 
in its iterative process (Arthur et al., 2020). When the   is 
zero, it becomes a Gauss-Newton method, using the 
approximate Hessian matrix. When   is large, it becomes a 
gradient descent method having a small step size. Newton’s 
method is faster and more accurate near an error minimum, 
so the aim is to shift towards Newton’s method as quickly as 
possible (Baghirli, 2015). Thus,   is decreased after each 
successful step (reduction in performance function) and is 
increased only when a tentative step would increase the 
performance function. In this way, the performance function 
will always be reduced at each iteration of the algorithm 
(Arthur et al., 2020; Baghirli, 2015). The trainlm 
optimization technique is more powerful than the 
conventional gradient descent techniques (Wilamowski, 
2009). 
 
3.5.3. BRBPANN 
BRBPANN denoted as (trainbr) sequentially updates the 
weights and bias values according to Levenberg-Marquardt 
optimization (Foresee and Hagan, 1997; Kaur and Salaria, 
2013). It minimizes a combination of squared errors and 
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weights, and then determines the correct combination to 
produce a network that generalizes well (Kaur and Salaria, 
2013; Pan et al., 2013). The method of improving 
generalization is referred to as regularization (Arthur et al., 
2020; Foresee and Hagan, 1997). The aim of training is to 
reduce the sum of squared error (𝜀஽). This implies that, the 
training objective function is 𝐹ఠ = 𝜀஽. However, 
regularization adds an additional term, 𝜀ఠ. The objective 
function is then expressed as shown in Eq. 19 (Foresee and 
Hagan, 1997; Yue et al., 2011): 
 

𝐹ఠ = 𝜏𝜀஽ + 𝜗𝜀ఠ                                                                                                                             (19) 
 
where; 𝜀ఠ is the sum of the squares of the network weights, 
𝜀஽ is the sum of network errors, 𝜏 and 𝜗 are the objective 
function parameters. In the trainlm framework, the weights 
of the network are viewed as random variables, and the 
distribution of the network weights and training set are 
considered as gaussian distribution (Baghirli, 2015). 
According to Foresee and Hagan (1997), the relative size of 
the objective function parameters dictates the emphasis for 
training. If 𝜏 ≪ 𝜗, then the training algorithm will drive the 
errors smaller and if 𝜏 ≫ 𝜗, training will emphasize weight 
size reduction at the expense of network errors. Thus, 
producing a smoother network problem (Arthur et al., 2020). 
Moreover, the main problem with implementing 
regularization is setting the correct values for the objective 
function parameters. The 𝜏 and 𝜗 factors are defined using 
the Bayes’ theorem. A detailed procedure for calculating the 
correct values of 𝜏 and 𝜗 is reported in Foresee and Hagan 
(1997). The Bayes’ then relates two variables (or events), 𝛼 
and 𝛽, based on their prior (or marginal) probabilities and 
posterior (or conditional) probabilities according to Eq. 20 
(Li and Shi, 2012; Baghirli, 2015): 
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where  P  is the posterior probability of   conditional on

 ,  P  is the prior of  conditional on  , and  P  is 

the non-zero prior probability of event  , which functions 
as a normalizing constant. In order to find the optimal weight 
space, the objective function (Eq. 19) needs to be minimized. 
This is equivalent to maximizing the posterior function given 
by Eq. 21: 
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where   and  are the factors needed to be optimized, D  
is the weight distribution,M  is the particular neural network 
architecture,  MDP is the normalization factor,  MP  , is 

the uniform prior density for the regularization parameters 
and  MDP ,,   is the likelihood function of D  given

M,, . Maximizing the posterior function  MDP ,,   is 

equivalent to maximizing the likelihood function 
 MDP ,,   In this process, optimum values for   and   

for a given space are found. Hence, trainbr model moves into 
trainlm phase, where Hessian matrix computations take 

place and updates the weight space in order to minimize the 
objective function (Baghirli, 2015). If the convergence is not 
met, algorithm estimates new values for   and   and the 
entire procedure repeats itself until convergence is reached 
(Yue et al., 2011). 
 
3.6. GRANN 
GRANN was first introduced by Specht (1991) and is a 
different kind of RBFANN which is based on Kernel 
regression networks (Yakubu and Dadzie, 2019; Hannan et 
al., 2010) with one pass learning algorithm and highly 
parallel structure (Dudek, 2011). GRANN consist of four 
layers namely; input layer, pattern layer (radial basis layer), 
summation layer, and output layer. In this study, the input 
and output variables were the frequency component values 
defined in section 3.4. The number of input units in the first 
layer depends on the total number of the observational 
parameters. The first layer is connected to the pattern layer 
and in this layer, each neuron is being presented by a training 
pattern and its output. The pattern layer is connected to the 
summation layer. The summation layer consists of two 
different types of summation namely, single division unit and 
summation unit (Hannan et al., 2010).  
 
The summation with output layer combined perform a 
normalization of output datasets. In training of the network, 
radial basis and linear activation functions are used in hidden 
and output layers. Each pattern layer unit is connected to two 
neurons in the summation layer. One neuron unit computes 
the sum of the weighted response of the pattern, and the other 
neuron unit computes unweighted outputs of pattern 
neurons. The output layer divides the output of each neuron 
unit by each other yielding the estimated output variables as 
according to Eq. 22 as: 
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where; y i

is the weighted connection between the i th   neuron 

in the pattern layer and the summation neuron, n is the 
number of training patterns, G is the Gaussian function 
given by Eq. 23. 
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where, m is the number of elements of an input vector, x1 and 
x1k are the jth element of x and xi respectively. During the 
network training, the spread parameter was varied between 0 
and 1 until the output with minimal residuals in terms of 
statistical analysis were achieved. This same procedure was 
also done when training the RBFNN. 
 
3.7. ARIMA 
The ARIMA model introduced by Box and Jenkins (1976) is 
a widely used technique for time series forecasting (Boye and 
Ziggah, 2020; Akyen et al., 2016). This type of model is a 
hybridized model which consists of autoregressive  AR  and 
moving average  MA  respectively (Boye and Ziggah, 2020; 
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Yakubu et al., 2018b). In ARIMA  qdp ,,  modelling, the 
first step is to check the stationarity of the time series data. 
When the used time series data is not stationary, it is 
transformed into a stationary time series by applying the 
appropriate order of differencing (d) (Yakubu et al., 2018; 
Akyen et al., 2016). The desired values of autoregressive 
order ( p) and moving average (q) is acquired by checking the 
autocorrelation function and partial autocorrelation function 
of the time series data (Makwinja et al., 2017; Yusof et al., 
2013). The  pAR  model is a discrete time linear equation 
with noise as expressed by Eq. 24 (Yakubu et al., 2018b): 
 

tptptt    11  (24) 
 

where t is the current forecasted model, p is the order, 1 , 

p,  are the parameters of coefficients of the model formed, 
ptt   ,1  are the previous observations, and t is the error of the 

forecast. The  qMA  model is an explicit formula for t  in 
terms of noise as given by Eq. 25: 
 

ptpttt    11  (25) 
 
The difference operator ∆ is given by Eq.26: 
 

tttt L  )1(1    (26) 
 
The ARIMA model with orders  qdp ,,  is given by Eq. 27 as: 
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(27) 
 

where; jL is the time lag operator, t is an error term, and id

is the order of integration. In this present study, the first order 
 1AR , and  1MA  was adopted due to its simplest non-

degenerated time-series process (Boye and Ziggah, 2020) as 
recommended by Makwinja et al. (2017) for LWL 
forecasting. The basic systematic approach utilizing Box-
Jenkins methodology was applied in this present study to 
build the first order ARIMA model giving by Eq. 24. This 
includes stationarity checks, model identification, parameter 
estimation, model selection, and diagnostic checking. A 
detailed literature review about these aforementioned 
techniques can be found in (Makwinja et al., 2017; Akyen et 
al., 2016). ARIMA model was implemented and coded in 
MATLAB environment. 
 
3.8. MLR 
It has been observed that LWL varies from time to time and 
is highly correlated with climatic conditions. Therefore, the 
MLR model can generate internal dynamics between inputs 
and outputs. MLR is a nonlinear regression model in which 
observational data are modelled by a function ))(( xfZ and 
depends on one or more independent variables (Tiryaki, 
2008). The MLR was adopted in this study to estimate the 
decompose LWL heights data defined in section 3.4. MLR 
fits a linear combination of the components of multiple input 
parameters to a single output parameter (Ziggah et al., 2016; 
Sheta et al., 2015). A  th  order MLR, thus,  MLR   refers to 

the correlation size between values in a time series that are 
  periods apart given by Eq. 28 (Sehgal et al., 2014): 

  
tii ix xZ   11  (28) 

 
where, 𝛼௜ are the MLR coefficients,  Z x  is the time series 

under investigation,   is the order (length of the MLR 
model), and  t  is the residual term which is assumed to the 
Gaussian white noise (Sehgal et al., 2014).  is generally 
much less than the data length of the series. Hence, in MLR 
model building, the LWL can be estimated by a linear 
weighted sum of previous decomposed LWL. He weights are 
the MLR coefficients which are normally estimated using the 
Least Squares method (Sehgal et al., 2014). The Least 
Squares approach has been successfully and frequently 
applied in geodetic sciences. Therefore, the mathematical 
backgrounds and theories of the method will not be repeated 
here. A more comprehensive detail on them can be found in 
the works of (Yakubu et al., 2018a; Peprah and Kumi, 2017; 
Peprah and Mensah, 2017; Ghilani 2010). 
 
3.9. Model Performance Assessment 
In order to determine the accuracies of the models being 
used, statistical error analysis was carried out. The statistical 
measures applied were the AME, AMSE, AMAPD, rmin, rmax 
and ASD. Their mathematical expressions are given by Eqs. 
29 to 34 respectively. 
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where; n is the total number of the observations, 𝛼௜ and 𝛽௜ are 
the measured and predicted decomposed LWL heights from 
the various techniques, 𝜇 denote the residual between the 
measured and estimated decomposed LWL height, 𝜇 ഥ is the 
mean of the residual and i is an integer varying from 1 to n. 
 
4. Results and Discussions  
4.1. Developing of ANN models 
A single layer BPANN model was trained using Bayesian 
Regularization, Levenberg-Marquardt and Scaled Conjugate 
Gradient learning algorithm respectively. Tansig and Purelin 
functions were both used for the hidden and output layer 
when training BPANN model with trainbr, trainlm, trainscg 
respectively. The optimal model structure, which is highly 
dependent on the number of hidden neurons was achieved 
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through a sequential trial and error approach based on the 
lowest AME, AMSE, AMAPD, rmim, rmax and ASD.  
In this present study, the model was trained varying the 
number of hidden neurons from 1 to 50. The network was 
allowed to train for 5000 epochs with a learning rate of 0.03, 
minimum performance gradient of 0.0000001, a goal of 0, 
maximum validation failures of 6, and momentum 
coefficient of 0.9 for each iterative training process. In 
training the neural network, validation stops when the 
minimum gradient and maximum epoch is reached.  
 
In the case of GRANN and RBFANN model training, the 
model’s output is highly based on the value of the width 
parameter (spread constant). Therefore, the optimal width 
parameter value for GRANN and RBFANN was also 
achieved based on a sequential trial and error approach for 
each iterative training process. Moreover, a gradient descent 
rule was implemented to train the GRANN and RBFANN 
model respectively. The ANN models (BRBPANN, 
LMBPANN, SCGBPANN, GRANN and RBFANN) were 
coded and implemented in MATLAB (R2018a) software.  
 
After several trial-and-error methods, the optimal model 
achieved by the BRBPANN model after successive iterative 
training in estimating the variables defined in section 3.4 
were [3 35 1], [2 33 1], [2 17 1], [2 31 1], and [2 39 1] 
respectively. That is, (3 and 2) input variables of the 
decomposed LWL by the WT (independent dataset), (35, 33, 
17, 31, and 39) hidden neurons respectively in estimating the 
low and high frequencies, and 1 output variable (dependent 
dataset). The optimal LMBPANN model after successive 
iterative training in predicting the frequency variables were [3 
7 1], [2 21 1], [2 6 1], [2 7 1], and [2 8 1] respectively. Also, 
the optimal SCGBPANN model in estimating the frequency 
variables were [3 9 1], [2 18 1], [2 13 1], [2 16 1], and [2 11 1] 
respectively. These optimal BRBPANN, LMBPANN, and 
SCGBPANN models’ structures gave the lowest minimum 
value in terms of their statistical analysis (AME, AMSE, 
AMAPD, rmim, rmax and ASD).  
 
Moreover, the optimal RBFANN predictive model in 
estimating the frequency variables with the least statistical 
assessment values were [3 20 1 0.1], [2 5 1 0.8], [2 30 1 0.1], 
[2 40 1 0.2], and [2 25 1 0.1] respectively. That is, (3 and 2) 
input variables (independent dataset), (20, 5, 30, 40, and 25) 
hidden neurons, 1 output (dependent dataset), and a width 
parameter (between 0 to 1). The optimal constant was 
achieved by varying the spread parameter (from 0 to 1) in 
each iterating training until the best results was achieved. The 
optimal GRANN model for predicting the frequency 
variables were [3 50 1 0.1], [2 50 1 0.1], [2 50 1 0.1], [2 50 1 
0.1], and [2 50 1 0.1] respectively. That is, (3 and 2) inputs 
(independent datasets), a hidden layer with a maximum of 50 
hidden neurons, 1 output (dependent dataset), and a width 
parameter of 0.1. The summarized results of the training and 
testing of the predicted frequency components  ia4 , ]1[ id , 

 id2 , ]3[ id ,  id4  by the various soft computing techniques are 

tabulated in Tables 2a to 2e. 
 
Based on the statistical results tabulated in Tables 2a to 2e, it 
is observed that soft computing techniques provide 

satisfactory results in successfully predicting the frequency 
variables with much better accuracy for the study area. The 
minimum and maximum residuals are quiet encouraging. 
The AME, AMSE, and ASD of both training and testing are 
quite good and equally encouraging. However, ANN 
proved to be a powerful realistic alternative tool for LWL 
modelling for the study area with much better accuracy. 
 
4.2. Developing the Classical Regression Models 
In formulating the MLR model for predicting the frequency 
variables discussed in section 3.4, a statistical description of 
the data was performed by using Sigma Plot Version 12.5 to 
find the correlation between the independent variables (input 
datasets) and the dependent dataset (output datasets). The 
optimal MLR equation generated by the Sigma Plot software 
for estimating the low and high frequency variables is given 
by Eqs. 35 to 39: 
 

   aaa i 42414 915.2928.100371.0   (35) 
 

   ddd i 12111 847.0579.0000102.0   (36) 
 

   ddd i 22212 016.0784.0000177.0   (37) 
 

   ddd i 32313 566.1868.0000180.0   (38) 
 

   ddd i 42414 805.1920.0000138.0   (39) 
 
where; ,,, 214 dda iii and d i4  are the dependent variables 
(frequency variables), (0.00371, 1.928, 2.915, -0.000102, 
0.579, 0.847, and so on) are the generated unknown 
parameters generated by the least square’s method. The final 
estimated ,,, 214 dda iii   and d i4  values with the given 
equation and parameters were coded and implemented in 
MATLAB environment. Moreover, in developing an optimal 
ARIMA model using the MATLAB software, non-
stationarity which existed in the decomposed data which will 
results in wrong statistical inferences was resolved by 
differencing the data to ensure that the data is stationary. In 
this study, ARIMA (0, 1, 1) model which is also known as 
first degree integrated moving average was the optimal model 
been developed from the decomposed data to predict the low 
and high frequency variables for the study area. According to 
Makwinja et al. (2017), the best model for forecasting Lake 
WL should have adequate accurate statistical performance as 
low as possible for it to have accurate forecasts.  
 
Therefore ARIMA (0, 1, 1) model was selected as the optimal 
model for WL forecasting for the study area based on the 
lowest statistical performance achieved in this study and 
recommendations by researchers. It was further observed that 
the coefficients of the parameters of ARIMA (0, 1, 1) model 
was significant (p<0.05). According to the works of (Boye and 
Ziggah, 2020; Makwinja et al., 2017; Akyen et al., 2016), the 
ARIMA model which indicate lowest normalized Bayesian 
Information Criterion (NBIC) is significant (p<0.05), hence, 
a better model in terms of forecasting performance than with 
large NBIC. Based on the results achieved in the present 
study findings, the most suitable model for forecasting Lake 
Volta WL for the study area was confirmed to be ARIMA (0, 
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1, 1). Table 3 shows the model performance results for the 
classical techniques. 

 

Table 2a. Models result for 
ia4  (units in meters) 

 

Training 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN -0.0014 5.3919E-05 0.0121 4.8856E-05 0.0963 0.0043 
LMBPANN 0.0014 6.2808E-05 0.0093 -2.2595E-05 -0.0893 6.9332E-05 
SCGBPANN 0.0013 0.0001 0.0205 -6.1036E-05 -0.2828 0.0001 

RBFANN -6.3960E-05 5.9891E-05 0.0121 -0.0001 -0.0995 5.9873E-05 
GRANN -0.0009 2.6722E-05 -0.0036 -1.1000E-05 -0.0961 2.2860E-05 

Testing 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN -0.0027 6.5311E-05 0.0050 8.9126E-05 -0.1611 9.2353E-05 
LMBPANN 0.0040 0.0002 0.0011 -0.0003 0.0543 0.0002 
SCGBPANN 0.0103 0.0004 0.0171 -0.0014 0.0794 0.0003 

RBFANN -0.0018 4.7458E-05 0.0031 0.0002 0.0431 6.5621E-05 
GRANN -0.1645 0.0012 0.0494 -0.0014 -0.8542 0.0004 

 
 
 

Table 2b. Models result for id1  (units in meters) 

 

Training 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN 0.0012 0.0006 1.8957 0.0022 -2.1847 0.0006 
LMBPANN 0.0041 0.1656 1.3527 -0.0001 -2.1460 0.0006 
SCGBPANN -0.0110 7.4018E-05 2.2698 0.0017 -2.1681 0.0001 

RBFANN -1.1375E-12 0.0007 1.3121 0.0011 -2.2336 0.0007 
GRANN -0.0071 0.0006 0.2939 -4.4400E-16 -1.9621 0.0006 

Testing 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN -0.0086 0.0019 0.2247 0.0010 -1.8006 0.0018 
LMBPANN -0.0092 0.0021 0.0346 -0.0009 -1.8528 0.0020 
SCGBPANN -0.0724 0.0010 2.5509 -0.0018 -1.7377 0.0003 

RBFANN 0.0148 0.0024 0.8620 0.0007 -1.7472 0.0026 
GRANN -0.0268 0.0025 0.3741 -0.0074 -1.9304 0.0023 

 
 
 

Table 2c. Models result for 
id2  (units in meters) 

 

Training 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN -0.0166 0.0001 0.2402 0.0004 -0.9282 7.3363E-05 
LMBPANN 0.0169 0.0002 0.2613 0.0002 0.7155 0.0002 
SCGBPANN -0.0022 0.0009 -0.1842 0.0024 -0.7994 0.0009 

RBFANN 1.6723E-09 8.2598E-05 0.2027 0.0007 -0.8467 8.2958E-05 
GRANN 0.0022 0.0002 0.0690 -3.1500E-09 -0.6034 0.0002 

Testing 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN 0.0141 0.0009 0.0119 0.0076 0.4237 0.0008 
LMBPANN 0.0466 0.0010 0.0240 -0.0032 0.4124 0.0006 
SCGBPANN 0.0209 0.0015 0.0705 6.7430E-05 0.4355 0.0014 

RBFANN 0.0339 0.0015 0.0239 0.0024 -0.4632 0.0012 
GRANN 0.0270 0.0004 0.0345 -0.0071 -1.9304 0.0007 

 
 
 

Table 2d. Models result for 
id3  (units in meters) 

 

Training 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN -0.0033 0.0002 0.1351 0.0013 0.5274 0.0002 
LMBPANN -0.0021 0.0003 0.1195 -0.0021 -0.5024 0.0003 
SCGBPANN 0.0038 0.0002 0.0674 -0.0015 -0.9021 0.0002 

RBFANN 0.0006 8.2401E-05 0.1023 -0.0016 0.8286 5.5251E-05 
GRANN 0.0027 0.0003 0.0830 1.4000E-14 -0.4600 0.0002 

Testing 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN -0.0138 0.0009 0.0287 -0.0036 -0.4268 0.0011 
LMBPANN -0.0074 0.0009 0.0969 0.0044 -0.4627 0.0009 
SCGBPANN 0.0203 0.0007 0.2362 -0.0003 -0.4657 0.0005 
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RBFANN 0.0023 0.0015 0.0494 0.0048 -0.4589 0.0015 
GRANN 0.0028 0.0013 0.5394 -0.0060 -0.6093 0.0013 

Table 2e. Models results for 
id4  (units in meters) 

 

Training 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN -0.0034 0.0002 0.1951 0.0001 -0.3434 0.0002 
LMBPANN -0.0013 0.0001 0.1585 -0.0004 -0.2160 0.0001 
SCGBPANN -0.0018 0.0002 0.2449 0.0001 0.1839 0.0002 

RBFANN -4.0936E-10 0.0002 0.2047 -0.0005 0.1722 0.0002 
GRANN -0.0014 0.0001 0.4272 1.1700E-05 -0.3009 0.0001 

Testing 

PCI AME AMSE AMAPD rmin  rmax  ASD 

BRBPANN -0.0012 0.0001 0.0234 0.0005 -0.0908 0.0002 
LMBPANN -0.0014 7.0606E-05 0.0423 0.0017 -0.0607 8.5040E-05 
SCGBPANN -0.0059 6.2526E-05 0.0830 0.0004 -0.0964 0.0001 

RBFANN -0.0019 4.2465E-05 0.0594 -0.0001 -0.0808 2.7507E-05 
GRANN -0.0079 0.0007 0.2629 0.0023 0.2178 0.0007 

 
 
 

4.3. Comparing the predictive performance results of the 
ANN models with the classical models 
The best optimal ensemble soft computing techniques (DWT-
BRBPANN, DWT-LMBPANN, DWT-SCGBPANN, DWT-
RBFANN, and DWT-GRANN) discussed in Section 4.1 
have been compared to the conventional techniques (DWT-
ARIMA and DWT-MLR) using the summation of all the 
predicted values. The statistical analysis is represented by 
Table 4. From Table 4, it is seen that the proposed hybrid soft 
computing techniques produce similar satisfactory results as 
compared to the classical techniques. The reason is related to 
the reported statistical assessment.  Statistical analysis of 

Table 4 indicates that the proposed ANN models’ predictions 
were closely related to the computed MLWL height with a 
higher prediction accuracy. The same was observed for the 
classical model with a high prediction accuracy in estimating 
the MLWL heights at a good precision. ARIMA and MLR 
models were observed to predict the LWL heights at a good 
accuracy. The maximum and minimum residual values of 
the conventional techniques and the soft computing 
techniques were -1.9967 m and -0.0003 m respectively. When 
comparing their statistical analysis, the MLR and ARIMA 
model had rmin values of -0.0016 m, -0.0007 m and ASD of 
0.0017 m, 0.0049 m respectively. 

 
 
 

Table 3 Model Performance assessment of the classical techniques (units in meters) 
 

a4  

PCI AME AMSE AMAPD rmin  rmax  ASD 

MLR 3.0920E-05 0.0001 0.0217 0.0005 -0.3548 0.0001 
ARIMA -0.0119 0.0056 0.0191 0.0004 -1.8513 0.0055 

d1  

PCI AME AMSE AMAPD rmin  rmax  ASD 

MLR -4.6671E-07 0.0004 0.8248 5.0770E-05 -2.2625 0.0004 
ARIMA -0.0885 0.0008 1.6332 -0.0019 2.4628 0.0005 

d 2  

PCI AME AMSE AMAPD rmin  rmax  ASD 

MLR -1.5776E-06 0.0012 0.1091 -0.0025 0.9872 0.0012 
ARIMA 0.0007 0.0028 0.4610 0.0024 1.6662 0.0028 

d 3  

PCI AME AMSE AMAPD rmin  rmax  ASD 

MLR 3.7776E-07 0.0002 0.2056 -0.0009 0.9216 0.0002 
ARIMA -0.0015 0.0015 0.1641 0.0001 0.7095 0.0015 

d 4  

PCI AME AMSE AMAPD rmin  rmax  ASD 

MLR -6.6421E-07 0.0001 0.2137 4.8525E-05 -0.2178 0.0001 
ARIMA 0.0039 0.0016 0.1386 -7.9500E-05 -0.6966 0.0016 

 
 
 

Table 4 Statistical analysis of all the models (units in meters) 
 

PCI rmin  rmax  AME AMSE AMAPD ASD 

DWT-BRBPANN -0.0327 1.9793 0.2768 0.0036 0.2008 0.0026 
DWT-LMBPANN -0.0021 -1.9835 0.2776 0.0039 0.2405 0.0029 
DWT-SCGBPANN -0.0003 -1.9951 0.2500 0.0029 0.1450 0.0020 

DWT-RBFANN -0.0094 -1.9967 0.2820 0.0034 0.1585 0.0024 
DWT-GRANN 0.0007 -1.9936 0.1905 0.0033 0.3151 0.0026 

DWT-MLR -0.0016 1.9937 0.1988 0.0024 0.3824 0.0017 
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DWT-ARIMA -0.0007 -1.9661 0.2152 0.0041 0.0313 0.0049 
 

 

According to the works of (Boye and Ziggah, 2020; Akyen et 
al., 2016; Makwinja et al., 2017; Poku-Gyamfi, 2009; Chen 
and Hill, 2005; Peprah et al., 2017), it was observed that, the 
more complicated stochastic models, there is a likelihood the 
achieved results may deviate from their true mean. Hence, 
there was the need to keep the order as low as possible. The 
performance of the hybridized WT with the classical 
techniques outperforms the ANN techniques in estimating 
LWL heights.  
 
After comparing the soft computing techniques to the 
conventional techniques in terms of their statistical analysis, 
the classical techniques were much better as compared to the 
soft computing methods in estimating LWL heights for study 
area. However, DWT-MLR model compared to DWT-
BRBPANN, DWT-LMBPANN, DWT-SCGBPANN, 
DWT-RBFANN, DWT-GRANN and DWT-ARIMA 
showed better performance in predicting the LWL heights for 
the study area. Figures 5a to 5c show the AME, AMSE and 
AMAPD model graphs of all the applied techniques. 
 
 
 

 
Fig. 5a. AME graph of the models 

 
 
 

 

 
Fig. 5b. AMSE graph of the models 

 
 
 

 
 

Fig. 5c AMAPD graph of the models 
 
 
 

5. Conclusions and Recommendations 
LWL study is an important characteristic of the lake 
ecosystem. Precise predicting of LWL using time series 
analysis is a crucial step to understand the hydrodynamics of 
the lake basin. Hence, this is problematic with major 
economic, social and environmental implications. This study 
for the first time in Ghana investigates the theoretical and 
practical analysis of Artificial Intelligence and Classical 
Regression models in modelling and predicting the monthly 
LWL of Lake Volta Basin. An ensemble model approach of 
DWT-BRBPANN, DWT-LMBPANN, DWT-SCGBPANN, 
DWT-RBFANN, DWT-GRANN, DWT-MLR, and DWT-
ARIMA were adopted in predicting the monthly LWL for 
Lake Volta Basin. The available satellite altimetry data for 
twenty-eight years, thus, (October 1992 – September 2020) 
was used in the model building process. The statistical 
measures that were applied in assessing the performance of 
the proposed models include AME, AMSE, AMAPD, rmin, rmax, 
and ASD. The present study selected DWT-MLR model as 
the best model for modelling the monthly LWL of the Volta 
Basin based on its statistical performance. DWT-MLR 
achieved AME, AMSE, AMPAD, and ASD of 0.1988 m, 
0.0024 m, 0.3824 m, and 0.0017 m respectively which 
indicated a good forecast of the model as compared to the 
DWT-ARIMA, DWT-GRANN, DWT-RBFANN, DWT-
BRBPANN, DWT-LMBPANN, and DWT-SCGBPANN 
which achieved 0.2152 m, 0.0041 m, 0.0313 m, 0.0049 m, 
0.1905 m, 0.0033 m, 0.3151 m, 0.0026 m, 0.2820 m, 0.0034 
m, 0.1585 m, 0.0024 m, 0.2768 m, 0.0036 m, 0.2008 m, 
0.0026 m, 0.2776 m, 0.0039 m, 0.2405 m, 0.0029 m, 0.2500 
m, 0.0029 m, 0.1450 m, and 0.0020 m respectively. Based on 
the results achieved in this present study, it is concluded that 
utilizing hybridized models for LWL modelling have proven 
to be purposeful and can be adopted for management of lake 
ecosystem. However, it is recommended that, more works 
should be done in Lake Volta Basin of Ghana utilizing other 
soft computing techniques which were not considered in this 
study. Notably among them are deep learning Convolutional 
Neural Networks (CNN), Least Squares Support Vector 
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Machine (LSSVM), Extreme Learning Techniques (ELM), 
Group Method of Handling Data (GMHD), Genetic 
Programming and many others to classical improved 
regression techniques such as Gaussian Regression model, 
Kernel Ridge Regression, Autoregressive Fractionally 
Integrated Moving Average (ARFIMA) to evaluate its 
effectiveness for future further analysis of the Lake Volta 
Basin. 
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